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A. Popovas1, 2, Å. Nordlund1, 3 and M. Szydlarski1, 2

1 Rosseland Centre for Solar Physics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo, Norway
e-mail: andrius.popovas@astro.uio.no

2 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo, Norway
3 Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark

Received; accepted

ABSTRACT

Context. Solar modelling has long been split into ”internal”and ”surface”modelling, because of the lack of tools to connect
the very different scales in space and time, as well as the widely different environments and dominating physical effects
involved. Significant efforts have recently been put into resolving this disconnect.
Aims. We address the outstanding bottlenecks in connecting internal convection zone and dynamo simulations to the
surface of the Sun, and conduct a proof-of-concept high resolution global simulation of the convection zone of the Sun,
using the task-based DISPATCH code framework.
Methods. We present a new ‘volleyball’ mesh decomposition, which has Cartesian patches tessellated on a sphere with
no singularities. We use our new entropy based HLLS approximate Riemann solver to model magneto-hydrodynamics
in a global simulation, ranging between 0.655—0.995 R�, with an initial ambient magnetic field set to 0.1 Gauss.
Results. The simulations develop convective motions with complex, turbulent structures. Small-scale dynamo action
twists the ambient magnetic field and locally amplifies magnetic field magnitudes by more than two orders of magnitude
within the initial run-time.
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1. Introduction

Throughout most of the history of trying to understand the
Sun, solar research has been split into ‘internal’ and ‘sur-
face’ solar physics topics, and an integrated global view of
the Sun’s complex plasma dynamics has been lacking. For
instance, surface models, however complex they have be-
come (e.g. Carlsson, Mats et al. (2016); Chen et al. (2022);
Przybylski et al. (2022)), have to make certain initial and
boundary assumptions about the magnetic field. These as-
sumptions are usually specified as experiment input param-
eters, and to a large extent reflect a need to take larger
scales (in space and time) of convection, differential rota-
tion, and magnetic fields into account. Moreover, simula-
tions are usually plane-parallel, which severely restricts the
horizontal extent that can be simulated without sacrificing
realism because of lacking curvature and large scale dif-
ferential rotation. In addition, certain features in the at-
mosphere of the Sun can span large distances, e.g. coronal
loops ∼ 100 Mm (Peter, H. et al. 2013; Reale 2010), promi-
nences ∼ 10–100 Mm (Parenti 2014), and supergranulation
∼ 30–50 Mm (Rieutord & Rincon 2010). Such features are
thus difficult to study in isolation. Likewise, dynamo sim-
ulations, seeking to reveal the origin of the magnetic field
and its cyclic behaviour, usually span from the bottom of
the convection zone up to 10–30 Mm below the surface,
which gives significant benefits (large time-step, use of in-
compressible gas approximations, etc.) but at the cost of

having to neglect the surface physics and the existence of
sunspots.

To resolve this disconnect many bottlenecks must be ad-
dressed: Highly disparate spatial and temporal scales, com-
plex microphysics, the interplay between local and global
effects, very wide dynamic range, and required resolution
in both space and time to resolve various features at dif-
ferent depths of the atmosphere. Tremendous efforts have
been made recently to resolve such disconnects for the Sun
and other stars. Hotta & Kusano (2021); Hotta et al. (2022)
used global simulations of the solar convection zone to study
solar differential rotation. They used spherical geometry
and a Yin-Yang grid (Kageyama & Sato 2004) with the
sphere spanning 0.71–0.96 R�. Guerrero et al. (2022) ran
global anelastic convection simulations between 0.6–0.96 R�
and found that obtaining the correct distribution of angu-
lar momentum is not a mere issue of numerical resolution;
magnetism and near-surface shear layer may be necessary to
simulate the solar interior accurately(Guerrero et al. 2022).

In a larger context, the Sun is only one example of
a rather common type of stars, and similar efforts have
been made for other stars; e.g. Käpylä (2021) ran 2883 and
5763 grid points star-in-a-box simulations of fully convec-
tive stars, showing that the geometry of a star is not the
defining criterion for generating differential rotation and
large-scale magnetism. These works are just a few exam-
ples, using rather different mesh decomposition, physics in-
volved, spatial and time resolution, etc.. What they have
in common is an effort to connect the deep interiors with
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the atmospheres of stars. Such simulations are extremely
computationally expensive, often forcing significant sacri-
fices. Incompressible or anelastic models are not applicable
close to the photosphere of stars, Cartesian boxes are not
very suitable for maintaining a spherical hydrostatic equi-
librium, and spherical coordinates have singularities at the
poles, to mention just a few.

To address outstanding bottlenecks and connect internal
convection zone and dynamo simulations to the surface of
the Sun, we employ the task-based DISPATCH code frame-
work (Nordlund et al. 2018). This framework has several key
features that are critical for this work:

– it uses local time-steps for each patch;
– it is solver agnostic, allowing modular selection between

several standard and non-standard methods;
– it uses hybrid MPI/OpenMP parallelism, with only

nearest-neighbour MPI communications, which gives
theoretically unlimited scaling;

– it can work with curvilinear meshes, or curvilinear ar-
rangements of locally Cartesian meshes

– it can employ static or adaptive mesh refinement;
– it has flexible mechanisms to handle additional physics,

such as non-ideal MHD, heat conduction, and radiative
energy transfer.

We will touch on each of these features in more detail
throughout the following sections of the paper. In sections 2
and 4 we describe the basic equations and set-up. We use a
‘volleyball’ mesh decomposition, which is described in sec-
tion 3. Simulations are started from a modified hydrostatic
equilibrium. Since the setup covers the whole surface of the
Sun, we only have to use radial boundary conditions, which,
together with the initial conditions, are described in 5. The
relaxation of the simulations is described together with the
initial results in section 6, followed by discussions and con-
cluding remarks in sections 7 and 8,respectively.

2. Basic equations and set-up

The DISPATCH framework can use several different solvers
for magnetohydrodynamics (MHD); an entropy based
STAGGER solver, used in Popovas et al. (2018, 2019), an
internal energy based Stagger solver taken straight from the
Bifrost (Gudiksen et al. 2011) code, and several Godunov-
type Riemann solvers based on the HLLC and HLLD solvers
from the public domain RAMSES code (Teyssier 2002;
Teyssier et al. 2006; Fromang et al. 2006), used in (Pan
et al. 2018, 2019). Both of these solver groups have their
benefits and limitations. The Stagger group is very good
under conditions where magnetic fields are dominating the
energy budget, as in the solar corona. However, they are
very diffusive and perform poorly under low Mach number
condition. The Riemann solver group is much better under
conditions where detailed turbulent structures are needed,
but are flawed with respect to accurately evolving thermal
energy when kinetic or magnetic energies dominate the en-
ergy budget—this can give rise to negative pressures in the
solar corona, and can cause inaccurate convective flow ve-
locities. This is a well known problem with Godunov and
Roe type Riemann solvers based on total energy. Many dif-
ferent ad hoc solutions have been suggested (e.g. Ismail &
Roe 2009; Winters & Gassner 2016; Gallice et al. 2022),
which do not necessarily resolve the problems, but at least
make them less visible.

In this work, we use a new, entropy-based HLLD Rie-
mann solver (HLLS; Popovas 2022), which gives the accu-
racy and performance of a Godunov solver while avoiding
the negative pressure problem and providing correct con-
vective flow velocities. Maintaining an accurate hydrostatic
equilibrium is also more manageable with entropy as the
main energy variable.

We use the MUSCL-Hancock algorithm with con-
strained transport (CT; Evans & Hawley 1988) for the in-
duction equation, as well as a positivity preserving 3D un-
split TVD slope limiter; see Fromang et al. (2006) for de-
tails. The source terms from gravity, Coriolis forces, Newton
cooling, etc. are added during both the predictor and the
corrector steps. These procedures are explained in detail in
Popovas (2022)—here we only briefly summarise the partial
differential equations the solver employs.

2.1. Partial Differential Equations

The fluid equations for the total mass density, momentum
density, entropy per unit mass and the magnetic field of the
system can be written as a system of conservation laws,

∂

∂t


ρ
ρu
ρS
B

+∇·


ρu
ρ(u ⊗ u) + Ptot − B ⊗ B

ρuS
B ⊗ u − u ⊗ B

 =


0
Φ

Q/Tgas + Sgen
0

 ,
(1)

with

∇ · B = 0, (2)

where ρ, u, S , Ptot, and B are density, velocity, entropy per
unit mass, total pressure and magnetic field respectively;
Φ is force per unit volume, which includes force of gravity,
Coriolis force, etc; Q is heating per unit volume, which in-
cludes Newton cooling, radiative heat transfer, etc; Tgas is
gas temperature and Sgen is entropy generation from con-
verting kinetic energy to heat. The system is closed by an
equation of state (EOS), described in the next subsection.

The system in Eq. 1 can be written in vectorial form,
similar to e.g. Londrillo & Del Zanna (2000),

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= Ψ, (3)

where

U = (ρ, ρux, ρuy, ρuz, ρS)T, (4)

Ψ = (0,Φx,Φy,Φz,Q/Tgas + S gen)T , (5)

and

F =


ρux

ρu2
x + Ptot − B2

x
ρuxuy − BxBy
ρuxuz − BxBz

ρuxS

 (6)

is the flux function. The expressions for the terms G and H
are analogous.
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The divergence-free magnetic field condition (Eq. 2) in-
side patches is maintained via the very accurate CT al-
gorithm (see e.g. test results in Popovas 2022). As in the
Ramses HLLD solver (Fromang et al. 2006), the magnetic
field is thus actually evolved with a 2-D Riemann method
that corresponds to

∂B
∂t

= −∇ × (B × U) , (7)

while the B-part of Eq. 1 is simultaneously used in a 1-
D HLLD Riemann solver that produces updates of mass
density, momentum, and entropy.

As we interpolate in space and time, the interpolated
magnetic field is not necessarily divergence free in the
guard zones. To mitigate that, we use a simple, localised
divergence-cleaning routine in the guard zones, correcting
the perpendicular magnetic field vector component, given
the components parallel to each patch face. The procedures
will be explained in more detail in Popovas & Nordlund
(2022, in prep.b).

2.2. Departure from entropy conservation

In a closed system, energy cannot be created or destroyed;
it can only change its form. This is a fundamental re-
quirement and is mathematically fulfilled in energy-based
Riemann solvers1. We have converted the solver into an
entropy-based one, and thus we need to account for en-
tropy changes in shocks and magnetosonic waves. Indeed,
accounting for this entropy increase is the defining feature
of this new solver. The generated entropy S gen depends on
the state of the Riemann fan and is characterised by the
change of density, normal velocity and total pressure, when
crossing a given discontinuity. This generated entropy is
then added to ρS , carefully ensuring that it is added to
the correct side of the interface between two cells, where an
entropy-generating discontinuity occurred. A more detailed
procedure description is beyond the scope of this work and
is deferred to Popovas (2022).

2.3. Equation of state

We use a tabular EOS (Tomida et al. 2013, updated by
Tomida & Hori 2016), which uses logarithmic density and
temperature as independent variables. The default table di-
mensions are 461x761. In order to use the table with our
new solver, we transformed the EOS table to use entropy
per unit mass instead of temperature as the second variable.
The use of the tabular EOS in the HLLS solver, as well as
details of the high-performance DISPATCH EOS lookup
module will be explained in detail in Popovas & Nordlund
(2022, in prep.a), and is only briefly summarised here:

After reading the EOS tables, we add entropy per unit
mass to them. This is done by integrating

dS =

 1
T

(
∂ε

∂T

)
ρ

 dT +

[
1
T

(
∂ε

∂ ln ρ

)
T
−

P
Tρ

]
d ln ρ, (8)

here ε is internal energy. Next, we re-interpolate the table
to a denser grid to have more accurate values in the quick

1 albeit Riemann solvers in practice rarely include the gravita-
tional energy in their ‘total energy’, and hence require explicit
gravitational work terms when forces of gravity are present

look-up routines. Then, we remap all table quantities to
a density-entropy table. Lastly, and importantly, we check
that our new table satisfies the thermodynamic identity,(
∂ε

∂ρ

)
T

=
P
ρ2 −

T
ρ2

(
∂P
∂T

)
ρ

=
P
ρ2

(∂ ln P
∂ ln T

)
ρ

 , (9)

and gives exact results to numerical precision for requested
quantities, when compared to the original table.

This EOS table is later used both to modify the ini-
tial hydrostatic equilibrium (see section 5) and to close the
PDEs in Eq. 1.

2.4. Code units

There are more suitable choices than CGS or SI units to
have the best numerical precision. In our simulation, we
use code units with length l = 108 cm = 1 Mm, time t =
103 s, and mass density ρ = 10−7 g/cm3. All other quan-
tities are then normalised correspondingly, based on their
dimensions.

2.5. Experimental setup

We use the ‘volleyball’ domain decomposition described be-
low to conduct the experiment. The radial extent of the
simulation domain is from 0.655 to 0.995 R�. At the top
boundary we are thus less than 3 Mm below the photo-
sphere. To emulate surface cooling we use Newton cooling
instead of the short characteristics radiative heat transfer
that we plan to use in the photosphere. The smallest cell size
near the surface in the simulation described in this paper is
500 km. When relaxation, described below, is complete we
will further refine the experiment and go down to a factor
of eight smaller cells.

In parallel with the primary simulation, we ran two ad-
ditional classes of simulations, with increased simplifica-
tions. The first one—the ‘small volleyball’ has exactly the
same parameters and the same physics, but the resolution is
lower, with 1.56 Mm cell size at the finest level. It contains
about 30,000 patches.

The second class, denoted ‘sandbox’ runs, is even more
simplified:

– the volleyball geometry is replaced with a plane-parallel
Cartesian mesh decomposition;

– the vertical extent is identical to the main experiment
but the horizontal extent depends on requirement and
is periodic;

– a Coriolis force is not present, but

– all other physical effects are identical;

– static mesh refinement is used to reach any required
resolution.

These last two simulations accompany the main one as
test-beds. They run much faster and are much cheaper. The
‘sandbox’ simulation can run on a local workstation, with
just a few cores assigned to it. The ‘small’ simulation can
be run on a single compute node. Their main function is to
run far ahead of the main simulation to validate the physics
modules, the stability of the setup, etc.
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Fig. 1. One layer of a volleyball mesh, with the back side re-
moved, for clarity.

3. Domain decomposition

In DISPATCH, we use a set of Cartesian patches arranged
in experiment-specific geometries. Each patch contains N3

cells (in the current work, we generally use N = 24, plus 3
guard zone cells on each side, thus 303 cells in total. These
patches are then placed on a sphere, in a volleyball-like ar-
rangement, cf. Fig. 1. The patches are oriented so their z
axes always lie in the radial direction. The tilt between ad-
jacent patches is very small, with exceptions at the ‘seams’
between the six ‘faces’ of the volleyball.

3.1. Volleyball patch arrangement

This mesh decomposition may, from a first glance, appear
similar to a cubed-sphere (Ronchi et al. 1996). However,
the cubed-sphere is a truly curvi-linear coordinate system in
each face region, in which case the solver must be built with
the metric coefficients of that coordinate system explicitly
known and used. In the volleyball decomposition we have
purely Cartesian patches, arranged on a sphere with slight
overlaps between them. Note that there is no plane-parallel
approximation employed; the force of gravity, for example,
is everywhere pointing in the exact radial direction, and as
a consequence, hydrostatic solutions inside the patches are
small spherical cut-outs, which—despite their small size—
deviate ever so slightly from plane-parallel solutions.

We start by tessellating a sphere by generating a set of
points. The point object P stores as attributes

1. its position both in spherical and Cartesian coordinates,
2. the size of the patch,
3. its north vector Ξ, and
4. the coordinate system unit vectors R.

An important value here—a horizontal step—is the angu-
lar spacing between the patches. It is defined as ∆θ = θ0/Nθ,
where θ0 = tan−1(2−1/2) (the angular half-width of a volley-
ball face) and Nθ is a parameter that can vary from layer
to layer (see below). We start with the outermost layer,
i.e. r = rmax = 0.995, with half a patch size L north-east
offset from the centre of a front volleyball face (there are
6 faces in total—front, back, left, right, top and bottom—
alternatively referred to as front, back, west, east, south and

north). Given the number of intervals Nθ in the θ direction,
we generate the point positions and patch sizes L,

L = r
∆θ

1 − ∆θ
. (10)

We cover the whole face by stepping ∆θ eastwards, i.e. the
new φ coordinate of the point is then

φ = φold +
∆θ

cos(θ)
. (11)

This stepping, interleaved with steps northward,

θ = θold + ∆θ, (12)

ends up covering a quarter of a face (1/24 or the entire
surface). The rest of the surface is covered by executing a
sequence of symmetry and flipping operations—we spawn
the identical points on the other 6 volleyball faces by sim-
ply applying a symmetry operation, which involves three
permutation operations (going from front to right, to top,
returning to the front) and two reflection operations (go-
ing from front to back). These operations have several sub-
steps in them; e.g. for permutation:

1. permute the Cartesian coordinates;
2. permute the North proxy;
3. convert Cartesian coordinates to spherical;

and for reflection:

1. invert Cartesian coordinates;
2. convert Cartesian coordinates to spherical.

After the symmetry operation, we go from the east to the
west quadrant of the face (an east-west operation):

1. φnew = −φ;
2. convert spherical coordinates to Cartesian;

In the same way, we need to go from the north to the south
quadrant (a north-south operation):

1. θnew = −θ;
2. convert spherical coordinates to Cartesian.

We do the last two operations twice more to get back to the
original starting point and, of course, do all the symmetry
operations in-between these steps.

We continue by stepping east, and keep stepping as long
as the point is entirely inside the front face, i.e. inside the
latitude limit of the front volleyball section, and as long as
its lower south west patch corner is outside of the east face.
When the patch goes out of bounds in the east direction we
go back to the starting point and take a step north. We keep
repeating the steps until the whole surface of the particular
layer is covered. When this is done we are ready to move
one layer down.

In spherical coordinates a volume with a constant an-
gular size ∆θ would become physically smaller and smaller
with diminishing radius. However, in the interior of the
Sun, the size of features and typical timescales are increas-
ing with diminishing radius. Another important fact is the
increase of the speed of sound with diminishing radius—
together with a decreasing size this can severely restrict
the allowed time-step. Instead, we want the cell size to in-
crease with decreasing radius, to adjust to the increasing
scales of motion and thus optimise the performance of the
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Fig. 2. Radial cut of the volleyball layers.

simulation. The simplest solution is to reduce Nθ, and thus
make ∆θ larger. Extra care must be taken so that Nθ does
not become large enough for gaps to appear in the tessella-
tion. To avoid gaps, we define a smallest allowed Nθ. Figure
2 shows an example radial cut through the layers. As may
be seen, patches near the surface are much smaller than
patches near the bottom of the model.

3.1.1. Rotation matrices

To rotate the patches into their correct orientation we use
rotation matrices R. These matrices have the unit vectors

of the local patch coordinate system expressed in the global
Eulerian coordinates as columns and the unit vectors of the
global coordinate system expressed in local coordinates as
rows. The rotation matrix is thus:

R =

 ι κ λ
µ ν ξ
x̃ ỹ z̃

 (13)

where P̃ = [x̃, ỹ, z̃] = P/(P · P)1/2 is the normalised Carte-
sian position P, representing unit vector ‘up’, ζ = Ξ × P̃,
Ψ = [ι, κ, λ] = ζ/(ζ · ζ)1/2 representing a ‘unit vector east’,
ϑ = P̃ × Ψ, [µ, ν, ξ] = ϑ/(ϑ · ϑ)1/2 representing a ‘unit vector
north’. Vectors in the local patch coordinate system can be
transformed into vectors in the global coordinate system
by noting that each component in the global coordinate
system is the scalar product of the local vector with the
global unit vectors, which encourages that the local vectors
are considered to be column vectors, while global vectors
are considered to be row vectors. The transformations may
thus be written[
g1 g2 g3

]
= R ·

l1l2
l3

 , (14)

while the transformation from global to local coordinates
correspondingly isl1l2
l3

 =
[
g1 g2 g3

]
· R . (15)

In Fortran and Python these operations can be performed
using the built-in matmul(a,b) procedures, which allow
both a and b to be either vectors or matrices.

If coordinates in the global and local coordinate systems
share a common origin these transformations are complete.
If they are relative to the centres of the local patches, the
distance between the patch centres need to be taken into
account, by being added either before (if given in the local
coordinate system) or after the matrix multiplication (if
given in the local coordinate system).

3.1.2. Relative coordinate transformations

To transform from one local coordinate system to another,
for example in the context of guard zone interpolations,
one could transform from one local system to a global sys-
tem and then from there to another local system. It is
more convenient, however, to make use of a relative trans-
formation matrix, which has the local unit vectors of the
‘source’ patch, expressed in the ‘target’ coordinate system
as columns, and correspondingly has the local unit vectors
of the ‘target’ patch expressed in the ‘source’ coordinate
system as rows. It is clear then that the ‘source’ coordi-
nates take the role of the ‘local’ coordinates above, while the
‘target’ coordinates corresponds to the ‘global’ coordinates
above (common to a number of different ‘sources’ that con-
tribute to the same ‘target’).

[
t1 t2 t3

]
= R ·

s1
s2
s3

 , (16)

ands1
s2
s3

 =
[
t1 t2 t3

]
· R . (17)

Since the transformation from source to target can also be
achieved by first translating the source coordinates to global
coordinates and then go from there to target coordinates,
it follows that the relative transformation can be obtained
as the product of the transposed target rotation matrix and
the source rotation matrix:

R = RT
target
· R

source
(18)

3.2. Guard zone interpolations

DISPATCH utilises local time-stepping for individual
patches, thus each patch needs guard zone data from neigh-
bour (nbor) patches interpolated in both space and time.
Since the mass density varies a lot (both vertically and hor-
izontally), we convert to per-unit-mass variables, where ap-
plicable, before doing time-interpolations into the target’s
time. Most patches have only slightly tilted neighbours,
making it potentially possible to use standard Cartesian
coordinate interpolations, where only the fractional inter-
polation weight varies from point to point. However, near
the ‘seams’ between the six volleyball faces, the patches can
have arbitrary overlaps and different north vectors, which
require more general interpolation methods. In this context
we use the concepts of regions of authority (ROA) and re-
gions of interest (ROI). The region of authority of a patch
is the volume inside which the patch “has authority” and
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Fig. 3. A target patch (red) and its source neighbours (blue).
Red dashed lines show the guard zones of the target. Note the
slight tilt between adjacent patches.

updates the variable values. The region of interest in addi-
tion includes the guard zones of the patch, and potentially
may include sub-volumes where a neighbour overlapping
patch has a higher level of refinement. For simplicity and
consistency we currently use these more general point-by-
point interpolation methods for all patches. Figure 3 shows
a target patch with its surrounding source neighbours.
Note the slight tilt between patches.

For patches with a significant relative tilt between each
other, a simple lower-left-corner and upper-right-corner in-
terval range for the ROI is not sufficient. Instead, we take
all 8 corner points and find the smallest and largest index
in the local frame of reference of the patch we need, to get
guard zone data for the target.

3.2.1. Interpolation in time

Each patch stores the MHD quantities at 5 different times,
in a rotating time-slot buffer. As described in Nordlund
et al. (2018), a patch is ready to be updated when all nbor
patches are ahead in time (including a potential ‘grace’ time
interval) of target. We perform linear interpolation be-
tween the time slots of nbor (source) to find the time slot
indices and weights. These weights are then applied to the
selected source memory slots (using only the relevant in-
dex sub-regions) to get the required quantities for the given
target time. Higher order interpolation in time is available
as an option.

3.2.2. Cell-centred quantities

The rotation matrix R is defined at the centre of the patch,

thus to get the target cell coordinates pt = [xt, yt, zt] in the
source system ps = [xs, ys, zs], we need to take the scalar
product of the location in the target system with the ro-
tation matrix R of the source expressed in target coor-

dinates. These are available from Eq. 18. The coordinates
that go into the operation are the target coordinates rel-

Table 1. Mesh decomposition parameters of the simulation.

Bottom radius 0.655 R�
Top radius 0.995 R�
Nθ 36
Nθ,min 8
Nθ reduction rate 4
Levels of refinement 3
Initial max resolution 500 km
Final max resolution 62.5 km

ative to the source position, i.e. the distance from target
to source, d is subtracted before the multiplication:

ps = [(pt − d) · R]/c + o, (19)

where c is the patch’s cell size and o is the patch’s position
offset in index space. We go through the target’s ROI and
map all the target points to source points in its respective
ROA. Of course, not all ROI might be available in a given
index space we previously determined, thus we use an array,
which tells us if a given data point is available.

Lastly, we re-interpolate the MHD quantities from the
source to the target’s frame of reference. For scalars this
is just a simple interpolation in space, but for vectors (e.g.
cell-centred velocities) we need to transform the vector com-
ponents to the target system by using Eq. 16.

3.2.3. Face-centred quantities

Face-centred vector fields, e.g. the magnetic field, pose an
additional complication—different vector components are
located on different faces. Equation 19 now needs an addi-
tional component for the staggered position of the vector:

ps = [(pt − d) · R]/c + o + hµ, (20)

where µ is a coordinate axis. This gives us three position
data sets for the vector components. We go through the
target’s ROI and map all the target points to source
points in its respective ROA. For each vector component,
we re-stagger the perpendicular vector components into the
position of the vector component in question and store them
separately. Later these re-staggered components are used to
transform the vector to the target system of reference by
using Eq. 16.

3.3. Simulation setup and static mesh refinement

Table 1 summarises the basic parameters for the mesh de-
composition we use. The simulation spans 0.655–0.995 R�.
With Nθ = 36, we have 10 layers in the setup. The maximum
resolution near the surface is 500km. This is marginally suf-
ficient to resolve the dominant flows at this depth and to
relax the initial setup into a steady-state convective Sun in
the shortest time possible.

As soon as the simulation reaches a steady-state, differ-
ential rotation is fully established, and local dynamo action
is actively twisting the magnetic fields, we can increase the
resolution by using static mesh refinement. An example of
such refinement is shown in 4. Here, only 2 levels of re-
finement are added at 0.88 and 0.97 R�. In the production
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Fig. 4. Static mesh refinement in a ’sandbox’ version of the sim-
ulation. 2 additional levels are added, starting at 0.88 and 0.97
R�.

run, after the simulation is relaxed enough, 3 levels of re-
finement can be added with additional relaxation between
each additional level. This gives us a final resolution of 62.5
km. We do a factor of 2 refinement, creating 8 new leaf
patches on top of a parent patch. Newly created patches
are co-aligned with the parent patch, so their R is the same

as parent’s.
The top layers are the most numerous and each addi-

tional level of refinement means a factor of 2 reduction in
time-step and 8 times more cells, so we don’t want to run
with maximal resolution the whole time. Such simple mesh
refinement can be added during routine restarts of the run,
i.e. when node allocation on a compute cluster ends (this
is for example 2 days allocation on LUMI and 4 days allo-
cation on Betzy machines), or when the simulation triggers
some sort of a condition (elapsed time is a typical one for
static mesh refinement).

4. Source terms

Numerical simulations of the Sun can be as complicated as
one wants and can provide a wealth of different diagnos-
tics (e.g. Przybylski et al. 2022; Carlsson, Mats et al. 2016;
Kohutova & Popovas 2021; Finley et al. 2022; Druett et al.
2022 to name a few), but for now, we limit ourselves to only
a few key variables. Additional micro- and macro-physics
effects can easily be added later.

4.1. Force of gravity

For smaller 3D Cartesian simulations, it is common to
have a globally constant gravitational acceleration g, act-
ing along one of the axes, but since our simulation extends
through the whole convective zone we must have a more
realistic, radially dependent, g(r). We interpolate the value
for g from our 1D model in hydrostatic equilibrium (see sub-
section 5.1 for details). Since all patches have their z axis
pointing radially outwards, in any patch’s local coordinate
frame the force per unit mass is simply

fg = −g(r) ∗ r̂, (21)

where r̂ = [x, y, z+ rc]/r, with [x, y, z] being the cell positions
in the local frame of reference, relative to the centre of the
patch, rc is the radial distance from the centre of the Sun

to the centre of the patch, and r =
√

x2 + y2 + (z + rc)2 is the
radial distance from the centre of the Sun to a given cell.

4.2. Newton cooling

We use Newton cooling in the top few cell layers to drive
convection. We interpolate thermal energy per unit mass,
ε0, from our hydrostatic equilibrium data and obtain its
slope, ∆ε. Heating per unit mass is then

QN = [(ε0ψ − ∆εs) − εx,y,z]η, (22)

where ψ is a parameter that controls the strength of the
Newton cooling; s = p − r, with p being the position of a
patch’s centre in a global frame of reference; η = ξ/(1+ξ)τ0,
is an exponential decay function, where ξ = e−s and τ0 is
the cooling timescale, which we set to 200 s.

4.3. Coriolis force and rotation

The experiment is set up in a co-rotating frame of reference
with respect to the midplane of the Sun, and the whole Sun
is initially rotating as a solid body at a constant velocity.
This implies that initial longitudinal velocity is zero. The
differential rotation develops later with the help of Coriolis
and centripetal force. We use Ωcoriolis = 2.6 × 10−6 s−1.

5. Initial and boundary conditions

The experiment is initialised in a hydrostatic equilibrium
(see below), with small amplitude random perturbations in
vertical momentum at radii, above 0.75 R�,

δ(ρuz) = α sin(2πς), (23)

where α = 0.01 is the amplitude of perturbation and ς ∈
[0, 1] is a random number. This small perturbation speeds
up the development of convective motions.

5.1. Hydrostatic equilibrium

We start the experiment with a hydrostatic equilibrium,
iterated using our EOS tables together with the 1D Model-
S from Christensen-Dalsgaard et al. (1996) as a starting
structure. We compute the integrated mass, acceleration of
gravity per each layer, then we re-integrate the hydrostatic
balance, with constant entropy in the convection zone.

5.2. Initial magnetic field

There are many ways to initialise the magnetic field in local,
Cartesian simulation domains, e.g. uniform vertical, salt-
and-pepper, flux emergence, etc. There are fewer ways to
initialise a magnetic field in a global solar simulation. The
main requirement—it must be divergence free, the Sun must
not become a magnetic monopole (i.e. no purely vertical
magnetic field). Thus the magnetic field can be initialised
either as a thorus, or as a uniform field in the global frame
of reference. We initialise a uniform magnetic field, aligned
with the vertical axis in the global frame of reference, i.e.
B0 = [Bx,By,Bz] = [0, 0, 0.1] Gauss. This constant magnetic
field is then transformed to local frame of reference via Eq.
16. We chose such simple approach because of two reasons:

1. simplicity–∇ · B = 0 by definition initially;
2. convective motions quickly erase the simplicity of this

primordial magnetic field alignment.
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5.3. Boundary conditions

The experiment covers the entire surface of the Sun, thus
we only need to consider radial boundary conditions (BCs).

5.3.1. Bottom boundary

The bottom boundary is located below the tachocline,
where there are no more significant convective motions,
while some waves can still propagate. This simplifies things
significantly, allowing us to use diminishing boundary con-
dition for the vertical momentum component and symmet-
ric BCs for horizontal velocity components. The vertical
magnetic field component has a zero-gradient BC and con-
strained extrapolation is applied to the horizontal magnetic
field components. At the last internal point we enforce a
pressure node BC. For inflows (we check vertical velocity
one cell above), density and entropy are approaching ρ0 and
S 0 with characteristic time τbot = 1000 s. For outflows, we
adjust towards constant initial pressure P0, leaving entropy
per unit mass as is. In the guard zone layers both density
and entropy are extrapolated logarithmically.

5.3.2. Top boundary

The top boundary is located at 3.5 Mm below the surface. It
is cork-like, with an imposed vanishing derivative on the ve-
locity components. The vertical magnetic field component
once again has zero gradient BC and constrained extrapola-
tion is applied to the horizontal magnetic field components.
The density boundary condition is based on total pressure
(Ptot = Pgas + Pmag) scale height. The horizontal components
of the momenta are assumed to taper off with density, con-
sistent with assuming a no-shear boundary condition for
the horizontal velocity components. The vertical velocities
are tapered off with a density ratio factor. Entropy per unit
mass is kept constant, which implies adiabatic vertical tem-
perature gradients.

6. Relaxation and initial results

Due to finite numerical precision we expect the initial hy-
drostatic equilibrium not to be perfect and some oscillations
might occur while the system is relaxing into an equilibrium
state. We dampen these oscillations out, as it would take
large amounts of time for them to propagate out of the
simulation domain. To do so, we compute a horizontally
averaged vertical momentum over an MPI sub-domain at
each time-step and for the first 3000 solar seconds we apply
the average value to generate friction (as force per unit vol-
ume) over a characteristic time-scale τ = 100 s. After 3000
seconds of run time friction is turned off and the experiment
is allowed to run unimpeded.

To relax the simulation faster we exaggerate the New-
ton cooling, i.e. we set ψ = 0.95 in Eq. 22. This makes the
convective flux about 3 times stronger. As a consequence,
the convective cells are also initially larger. After the relax-
ation is complete we reduce the Newton cooling to values
more representative of the solar surface.

We see the first signs of convective motions appearing
at around 2 hours of solar time. These have highly repeti-
tive patterns, as initial perturbation is only partially ran-
domised. However, this repetition is very quickly broken
down by numerical rounding errors, and at around 6 hours

of solar time the convection pattern is essentially disor-
dered.

Figure 5 shows entropy per unit mass in the experiment.
The left hand side panel shows the surface slice, approxi-
mately 4.5 Mm below the top boundary. Large convective
cells are clearly visible and no repetitive patterns can be
identified. The right hand side panel shows a slice through
the domain at the prime meridian. Convective flows pen-
etrate deeply into the atmosphere. The tachocline can be
identified from the sharp drop in entropy per unit mass.

Figure 6 shows radial velocity in the experiment. Due
to enhanced Newton cooling, the radial velocities are cor-
respondingly larger. Velocity vector fields do not show any
interpolation glitches between adjacent patches. This also
includes seams, where relative angles are large and we need
to count on accurate transformations. We took a random
sample of individual patches throughout the box and inves-
tigated the transition between the guard zones and interiors
just after the guard zone interpolation. Transitions in both
vector and scalar quantities were smooth, without any dis-
continuities. This is very encouraging, as smooth transitions
between interfaces are rather challenging (e.g. Brchnelova
et al. 2022).

Figure 7 shows the radial component of the magnetic
field in code units. From both the left and right hand side
panels it can be seen that the primordial structure is already
mostly hidden by local dynamo effects; in some places the
magnetic field magnitude is already two orders of magni-
tude stronger than the initial mean magnetic field. We can,
in fact, see some magnetic vortices forming in some areas.
These initial concentration could later give rise to magnetic
activity at the surface, e.g. in the forms of network struc-
ture, pores, and sunspots. The magnitude of local dynamo
effects is greatly exaggerated here, due to much stronger
convection, but the topological and morphological effects
of the convective flow hierarchy are expected to be largely
independent of magnitudes.

Using our new HLLS solver provides us with a unique
bug-catching tool. Guard zone interpolation glitches create
artificial discontinuities. Discontinuities trigger jump con-
ditions, which in turn increase entropy per unit mass. Even
errors in the magnetic field can be misidentified as mag-
netosonic waves, which can increase entropy. Even if the
buildup of entropy per unit mass is marginal, after tens of
thousands of updates and continuous buildup we would be
able to see glitches in entropy per unit mass, even if other
quantities might be able to partially “mask” them. Figure
5 shows no signs of such localised entropy increases.

6.1. Weak and strong scaling

The DISPATCH framework has demonstrated excellent
scaling results past 150,000 cores on a fluid dynamics
problem (Nordlund et al. 2018). These results stem from
the nearest-neighbour-only MPI communications, com-
bined with the near-perfect scaling of OpenMP-parallel
task updates on each rank, and thus do not depend on
the detailed properties of the solver. Non-Cartesian geom-
etry implies slightly less straightforward MPI decomposi-
tion, which in turn might affect load balancing. In volley-
ball seams patches can have more than 26 neighbours with
more awkward overlapping regions of authority. All this, to-
gether with additional, experiment-specific physics, such as
Newton cooling, gravity, Coriolis force, etc., could affect the
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(a) Surface 4.5 Mm below the top boundary. (b) Slice across the simulation domain at the prime meridian.

Fig. 5. Entropy per unit mass in the simulation, in code units. Movie available online.

(a) Surface 4.5 Mm below the top boundary. (b) Slice across the simulation domain at the prime meridian.

Fig. 6. Radial velocity in the simulation, in code units. Movie available online.

perfect scaling that was previously demonstrated in simpler
geometries (Nordlund et al. 2018). Thus we conducted new
weak and strong scaling tests with the current experiment,
to check that excellent scalability can still be achieved. The
tests were conducted on the LUMI and Betzy supercom-
puter systems. Both of these machines have AMD EPYC
CPUs (models 7742 and 7702 respectively), which makes
them very similar, to the extent that Betzy can be consid-

ered LUMI’s ‘little sister’. The two machines have differ-
ent node interconnect and different compilers that we use,
though, Intel and GCC respectively. Thus the differences in
performance stem from the differences in the system con-
figurations and software.

To test the weak scaling, we employ our simplified ’sand-
box’ runs, where we fix the vertical resolution and expand
in the horizontal plane with an increasing number of cores.
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(a) Surface 4.5 Mm below the top boundary. (b) Slice across the simulation domain at the prime meridian.

Fig. 7. Radial magnetic field component, in code units.

Fig. 8. Weak scaling results on LUMI (red) and Betzy (blue)
supercomputers. For both machines the ideal scaling is shown in
black.

We fix the patch dimensions to 243 cells and keep the num-
ber of patches per compute node constant. In all the runs
there are 2 MPI ranks per node. In this test we take the
average update time (in µs/cell) over an extended period
of run-time in the execution phase (we ignore the initial-
ization phase). Figure 8 shows that with our experimental
setup we can still achieve nearly perfect weak scaling.

To test the strong scaling we run the complete experi-
mental setup. This setup is kept fixed to check that differ-
ent MPI decomposition (albeit still carefully chosen to have
reasonably good initial load balance) does not negatively
affect the run-time and the experiment can be successfully
executed on a range of MPI decomposition configurations.
In this test we measure the total wall-clock time it takes
for an experiment to get from the start of the execution
until experiment time reaches 0.2 code units. With a typi-
cal time-step of the order of approximately 10−3–10−2, each

Fig. 9. Strong scaling results on LUMI supercomputer.

patch is updated between of order 10 to 100 times. Fig-
ure 9 shows the result and it is clear that the volleyball
mesh decomposition together with the experimental setup
has very good strong scaling properties. Note, that at the
highest number of cores the efficiency drops, as the number
of patches drops to about 2.5 patches per core, which is well
below the optimal 20-50 tasks per core. The nearly perfect
scaling is re-established if mesh-refinement is used and the
workload (the number of patches per core) increases.

7. Discussion

The new volleyball experiment setup provides a unique op-
portunity to study complex plasma dynamics over a broad
range of scales in the Sun, both at depth, in the surface
layers, and in the corona.

The pilot relaxation runs described here were carried
out on Norway’s largest supercomputer, Betzy, and on the
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world’s 3rd largest supercomputer to date, LUMI in Fin-
land. On LUMI, we ran the relaxation simulation using 96
nodes (each node contains 128 cores, totalling 12288 cores).
With this size, in a 48 hour allocation period, the relaxation
simulation evolves 48.3 hours, and thus gives evolution close
to real solar-time. The ideal allocation for the refined pro-
duction run will be about 900 nodes (∼ 110,000 cores).

The performance can be further improved by a factor
of order 2-3, by re-organizing the solver memory access
pattern—this has recently been demonstrated in a test im-
plementation of the ideal gas HLLD solver.

7.1. Challenges

With the number of Cartesian patches ranging from hun-
dreds of thousands to millions, tessellation into a volleyball
arrangement gives some challenges, both with respect to
performance, and with respect to analysing and visualising
the data.

The interpolations between tilted meshes are slightly
costlier that in Cartesian mesh decomposition, but this can
be significantly mitigated if the relative angles between ad-
jacent patches is small enough to be handled as standard
Cartesian coordinate interpolations (with only the frac-
tional interpolation weights changing) can be used to in-
terpolate the guard zone data. This optimisation can of
course not be applied at the seams between the six volley-
ball ‘faces’, but the affected volume fraction is very small,
so the global cost would be dominated by the optimised
method.

We have in-house Python3 and Julia (Bezanson et al.
2014) language scripts to read in the snapshots and to pro-
cess the data as a whole and as slices. The processed data
can then be visualised with ParaView2. Even without mesh
refinement it is difficult to visualise the whole surface with
a single, albeit powerful workstation3, while with refined
meshes one would either have to use the parallel capabili-
ties of ParaView, or else zoom in to smaller regions, using
the “lazy reading” capabilities of the low-level DISPATCH
data access Python modules. We are also continuously de-
veloping new tools and procedures to speed up the data
processing.

The current snapshots, without mesh refinement, need
140 gigabytes of memory. Fully refined simulation will re-
quire approximately 4 terabytes of memory. Now consider
a future simulation with the core and photosphere included
(see below), in the context of helioseismology. To do proper
wave analysis we would require two weeks of solar time, with
a 1 minute cadence for snapshots. That would correspond
to 20160 snapshots, with approximately 100 petabytes of
data, if the snapshots were stored “as is”. Thus, for such
studies we need to develop different data storage and re-
trieval solutions.

7.2. Future work

A natural next step after fully relaxing the experiment is
adding a photosphere. We wish to delay this step until re-
laxation is complete, as adding a photospheric layer will

2 ParaView is an open-source, multi-platform data analysis and
visualisation application. https://www.paraview.org/
3 2× AMD EPYC 7742 64-Core Processor + 2× NVidia Tesla
V100

make simulations both more complicated and more expen-
sive:

– Newton cooling will be replaced by full multi-bin, short
characteristics radiative heat transport;

– Spitzer conductivity becomes relevant in higher layers;
– the resolution needed to sufficiently resolve the surface

convective cells is of the order of a few tens of kilometres;
– upper boundary conditions need some modifications to

minimise wave reflection

The current experiment includes the bottom of the convec-
tion zone. However, to do global helioseismological studies,
the convective stable central part of the Sun would need
to be included in the simulations. This would require us-
ing a different or extended EOS table source, as the tables
by Tomida & Hori (2016) can be used only down to ap-
proximately 0.5 R�. Including the central region of the Sun
also requires switching to a normal Cartesian tessellation
at some radius, to avoid the central singularity. As with
the seams already present, we do not expect this to lead to
significant glitches.

The structural design of the experiment (composed of
many small Cartesian grids) facilitates further exploration
with zoom-in type of simulations (regridding / refining in
space and time). This technique is commonly used in simu-
lations of star formation (e.g. Kuffmeier et al. 2017; Padoan
et al. 2020). We will use this kind of setup to be able to focus
on individual active regions without having to impose arti-
ficial initial and boundary conditions—these will instead be
provided from the large scale simulation of the whole Sun.

8. Concluding remarks

This paper describes a method to simulate the solar con-
vective zone with a new ‘volleyball’ mesh decomposition.
The method provides a resolution that can be varied with
radius, and while covering the full sphere still avoids coor-
dinate singularities.

We show that the guard zone interpolations between
patches do not lead to noticeable numerical artefacts, and
that the transition between adjacent patches is generally
smooth, also at the ‘seams’ between the six volleyball faces.

The proof of concept runs described here also demon-
strate how the DISPATCH framework’s flexibility allows us
to gradually build up experiments by including more micro-
physics, and by manipulating the mesh decomposition—
adding new layers, refining, or zooming in. This will be in-
dispensable in the near future, when we have completed the
relaxation and will be able to use the existing simulations
as starting points for further experiments, with potentially
different configurations and scientific goals.

Variations on the experimental setup can be used to
study, for example:

– local and global dynamo effects
– active regions and flux emergence
– local and global helioseismology
– ...

Studies that will concentrate on specific features in space
and/or time can use zoom-in techniques to focus on the
areas of interest and enhance the realism (use additional
physics modules) all the way to a similar extent as e.g.
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Carlsson, Mats et al. (2016), with boundary conditions re-
placed by immersion in fully spherical initial models.

In a broader context, the volleyball setup can be ap-
plied with advantage to any problem with spherical geom-
etry, without the need to handle coordinate singularities,
and with local representations that always have one axis
pointing in the vertical direction. Contexts where this tech-
nique, in combination with the cost-saving advantages of
local time-stepping, could significantly reduce simulation
costs include for example simulating planet growth by peb-
ble accretion, studying dynamics and escape of early planet
atmospheres, supernova explosions, as well as studies of ac-
creting and interacting black holes.
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Pan, L., Padoan, P., & Nordlund, Å. 2019, ApJ, 881, 155
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